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1 Determination of the transition zone

In order to estimate the localisation on the subduction interface of the transition be-
tween partially coupled and fully uncoupled areas, we build simple forward models with a
partially coupled area that extends from the trench downdip to a distance D and an un-
coupled area inland from distance D. The distance D is varied to examine the fit (Figure
S1). Cocos-North America plate convergence velocities calculated with the PVEL model
(DeMets et al., 2010) and projected onto the convergence direction are used to determine
the coupling coefficient on each fault patch. In Figure S1A, vertical rates have been pro-
jected onto a profile perpendicular to the trench. The predicted vertical-rate curve, and
in particular, the locations where the predicted velocities are zero or maximized, are par-
ticularly useful for indicating the down-dip limit of the partially coupled area. Figure S1B
illustrates the tradeoffs in the RMS misfit of the elastic model to the 54 GPS site velocities
upon varying the distance D and the coupling values. The model that best fits shape of
the velocity profile has a transition zone located at D '125 km inland from the coast (175
km from the trench) and an average coupling coefficient of 0.6. The scatter in the GPS
site velocities relative to the model predictions is caused by along-strike variations in the
coupling that are ignored in our model and the simplistic interface geometry assumed for
the model. Numerous subsiding stations that are located '300 km from the coast are non-
tectonic and instead a consequence of surface compaction in the Mexico City sedimentary
basin (López-Quiroz et al., 2009).
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Figure S1: Search for location of the deep transition between uncoupled and coupled areas of
the subduction interface. A. Vertical rates measured at GPS stations (red) and predicted by
elastic models (blue). The bottom panel shows the geometry and coupling parameters assumed
for the three elastic models. Coupling is laterally homogeneous, with values of 0.75 (light blue),
0.6 (blue), and 0.58 (dark blue) variously used for the shallow fault segment and values of zero
downdip from D. B. Tradeoffs in RMS misfits as a function of the position of the transition and
the coupling assumed for the shallower fault segment. Blue crosses indicate location of the three
models presented in A in this space.
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2 Coupling inversion method

For a model in which the subduction interface is divided into N patches, the inter-SSE
velocity at a given GPS station corresponds to the linear sum of the velocities that are
predicted for all N fault patches. The best inter-SSE coupling distribution on the fault
patches is found by minimisation of a cost function. Following the approach of Radiguet
et al. (2012), we use the least square formulation for linear problems (Tarantola, 2005),
where the cost function S(m) is defined as

S(m) =
1

2

[
(Gm− d)tC−1

d (Gm− d) + (m−m0)
tC−1

m (m−m0)
]

(1)

The model solution is given as

m = m0 + CmG
t
(
GCmG

t + Cd

)−1
(d−Gm0) (2)

wherem0 is an a priori model, G are the Green’s functions and Cd and Cm are the data
and model covariance matrices, respectively. As mentioned in the main text, for the 2D
flat-ramp geometry, the Green’s functions are computed following the discrete wave number
method (Bouchon, 1981, 2003) in an elastic stratified medium, assuming the Hernandez
et al. (2001) velocity model and using AXITRA software (Coutant, 1989). For the Slab1.0
3D geometry, we build the Green’s functions using Zhu and Rivera (2002)’s method for
the same stratified velocity model. We tested the influence of the prior model on the
inversion result using end-member prior models with uniform coupling values of either 1 or
0 (Figure S2). The difference between these two tests is very small and highlights that the
solution is mainly constrained by the regularisation, except in areas where coupling values
are very poorly resolved, mainly in corners of the designated subduction interface. In our
preferred models, we set the prior model to zero. Cd is a diagonal matrix with variances
σ2 related to the standard errors in the GPS site velocity components. As our problem is
underdetermined because of the number of observation sites, Cm is a regularisation matrix
designed to homogenise the solution by smoothing the coupling pattern, as follows

Cm(i, j) =
(
σm

λ0
λ

)2
e−

a(i,j)
λ (3)

where a(i, j) is the distance between fault patches i and j, σm is the standard deviation
of the model parameters, λ0 is a scaling factor equivalent to the patch size, and λ is
the correlation length. The function e−

a(i,j)
λ enables us to stabilise the solution at large

distances, whereas coupling on close patches may vary. The sensitivity of the solution to
parameters λ and σm is presented in Figure S3 for the 2D geometry case, which shows
normalised misfits as a function of the model roughness for several values of λ and σm.
We use the L criterion to select the best couple (λ, σm) (Hansen, 1992). Regardless of σm,
best couples give similar misfits. We select the couple (λ = 80 km, σm = 0.1 m) which
has the most reasonable correlation length compared to the patch size. We use the exact
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same parametrisation for the two geometries presented in the paper, in order to see only
the effect due to the geometry. The overall coupling pattern is not affected by changing
λ. We evaluated the robustness of the solution by computing the model resolution on the
interface following Tarantola and Valette (1982), as follows

R = CmG
t(GCmG

t + Cd)
−1G (4)

The resolution depends mainly on the sparsity of the GPS network, the number of
fault patches and the smoothing applied to achieve the preferred solution. A resolution of
1 corresponds to a fully resolved model, whereas a resolution of 0 means that the model is
unpredictable. Diagonal values of the resolution matrix (Figure S5a) specify the resolution
of individual fault patches. These are typically low (< 0.3) for the better resolved patches
and even lower (< 0.1) for many other patches. The poor resolution per fault patch
is a consequence of our relatively fine discretisation of the subduction interface, which we
adopted to better localise variations of coupling. Given that smoothing tends to spread the
fault coupling over several nearby fault patches, it is important to consider non-diagonal
values of the resolution matrix. The sum of rows of the resolution matrix, also called
the restitution index, indicates whether the coupling estimated for one fault patch is well
reproduced by the sum of the coupling values for nearby, surrounding fault patches. The
good density of the Mexican GPS network gives rise to a restitution index of '1 for the
entire subduction zone (Figure S5b).
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Figure S2: Influence of the a priori model m0 on the inversion solution (example for the 2D
flat-ramp slab geometry). The two upper panels present inversion results with homogeneous prior
coupling values of 0 and 1 on the whole subduction interface. The bottom panel corresponds to
the residuals between the two solutions.
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Figure S3: Normalised misfit as a function of the 2D slab geometry model roughness (maximal
slip velocity over average slip velocity). Grey points correspond to different λ values from 30 km
to 200 km spaced every 10 km. The three curves are relative to σm equal to 0.05 m, 0.1 m and 0.2
m. The red circled point, corresponding to the couple (λ = 80 km, σm = 0.1 m) is the one used
for the preferred inversion.
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Figure S4: Effect of various smoothing on the inversion (example for the 2D flat-ramp slab
geometry). Correlation lengths λ of 50, 80 and 110 km are presented, 80 km being used for the
preferred coupling solution.
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Figure S5: Resolution of the coupling solution (example for the 2D flat-ramp slab geometry). A.
Diagonal values of the resolution matrix. B. Restitution index, corresponding to the sum of the
rows of the resolution matrix. GPS station locations are indicated by inverse black triangles.
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