	AGU PUBLICATIONS						
1							
2	[Tectonics]						
3	Supporting Information for						
4 5	From the seismic cycle to long-term deformation: linking seismic coupling and Quaternary coastal geomorphology along the Andean Megathrust						
6 7	M. Saillard ¹ , L. Audin ² , B. Rousset ² , JP. Avouac ³ , M. Chlieh ¹ , S. R. Hall ⁴ , L. Husson ² , D. L. Farber ^{5,6}						
8 9	¹ Université Côte d'Azur, IRD, CNRS, Observatoire Côte d'Azur, Géoazur, 250 rue Albert Einstein, Sophia Antipolis 06560 Valbonne, France.						
10	² IRD, Univ. Grenoble Alpes, CNRS, ISTerre, F-38041 Grenoble, France.						
11 12	³ Tectonics Observatory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.						
13	⁴ College of the Atlantic, Bar Harbor, ME 04609, USA.						
14	⁵ University of California, Santa Cruz, Santa Cruz, CA, 95065, USA.						
15	⁶ Lawrence Livermore National Laboratory, LLNL, Livermore, CA 94550, USA.						
16							
17	Contents of this file						
18							
19	Tables S1 to S2						
20	Supplementary information 1						
21	Figures S1 to S3						
22							
23	Additional Supporting Information (Files uploaded separately)						
24							
25	Captions for Tables S1 to S2						
26	Caption for Figures S1 to S3						
27	Introduction						

28 Here, we present data used in Figure 1a and 1c that have been collected from existing literature: 29 Quaternary uplift rates deduced from marine terraces from central Peru to southern Chile and 30 the major historical earthquakes (Mw≥7.5) for the last 500 yrs. Additional information about the 31 inversion of GPS data for the coupling model and comparison between short-term, GPS-derived 32 interseismic coupling (from Métois et al. [2016]) and trench-coast distance are also included.

s	ite Name	Latitude (degrees)	Uplift rate (m/ka)	± MIS		References	
	Arauco peninsula	-37,49	1,60	0,23	5e		
Arauco	Arauco peninsula	-37,73	1,71	0,16	7e	Melnick et al., 2009	
Peninsula	Arauco peninsula	-37,57	1,42	0,10	9c		
	Altos de Talinay	-30,80	0,18	0,05	5e		
Altos de	Altos de Talinay	-30,80	0,28	0,04	7e	0	
Talinay	Altos de Talinay	-30,80	0,52	0,08	9c	Sallard et al., 2009	
-	Altos de Talinay	-30,80	0,64	0,04	17		
Tongoy /	Tongoy	-30,25	0,09	0,04	5e	Spillerd 2000: Spillerd et al. 2012	
Guanaqueros	Tongoy	-30,25	0,12	0,03	11	Salilaru, 2006, Salilaru et al., 2012	
bays	Guanaqueros	-30,20	0,33	0,12	5c	Radtke, 1987	
	Herradura	-30,00	0,12	0,05		Radtke, 1989	
	Herradura	-30,00	0,16	0,05	50	Leonard and Wehmiller, 1992	
	North Coquimbo Bay	-29,90	0,18	0,07	00	Leonard and Wehmiller, 1992	
	Punta teatinos	-29,80	0,22	0,05		Radtke, 1989	
Coquimbo	Herradura	-30,00	0,20	0,03	70	Radtke 1989	
	Punta teatinos	-29,80	0,31	0,03	10		
	South Coquimbo Bay	-30,00	0,08	0,03	9c	Leonard and Wehmiller, 1992	
	Herradura	-30,00	0,10	0,04	11	Loopard and Webmiller, 1002	
	North Coquimbo Bay	-29,90	0,14	0,04	11	Leonard and Wenniner, 1992	
	Quebrada Honda	-29,60	0,17	0,05	5e	Radtke, 1987	
	Huasco	-28,30	0,22	0,07	5e	Radtke, 1987	
	Puerto Viejo	-27,33	0,45	0,13			
	Bahia Inglesa	-27,12	0,30	0,12	5c	Radtke, 1987	
	Caldera	-27,06	0,38	0,12			
Dahia kuulaas	Puerto Viejo	-27,33	0,43	0,07	50	Dodtka 1007	
Bania Inglesa	Bahia Inglesa	-27,12	0,27	0,07	be	Radike 1987	
/ Caluera	Bahia Inglesa	-27,06	0,34	0,05	44		
	Caldera	-27,12	0,40	0,05	11	Marquardt et al., 2004	
	Morro de Copiapo	-27,10	0,26	0,06	13	Leonard et al., 1994	
	Caldera	-27,15	0,26	0,02	21	Quezada et al., 2007	
	Obispito	-26,45	0,26	0,09	5e	Radtke, 1987	
	Pan de Azucar	-26,15	0,25	0,05	5e	Radtke, 1987	
	Cifuncho	-25,65	0,25	0,04	5e	Radtke, 1989	
	Hornitos	-22,90	0,48	0,13	5c	Ortlieb et al., 1996a	
	Coloso	-23,75	0,12	0,04		Radtke, 1989	
	Mejillones north	-23,05	0,09	0,03		Radtke, 1989	
	Chacaya	-23,00	0,25	0,05	50	Ortlieb et al., 1996a	
	Hornitos	-22,90	0,27	0,04	56	Radtke, 1989	
	Hornitos	-22,90	0,25	0,05		Ortlieb et al., 1996a	
	Hornitos	-22,90	0,25	0,05		Radtke, 1989; Ortlieb et al., 1996a	
	Coloso	-23,75	0,18	0,03		Radtke, 1989	
Meillenee	Abtao	-23,45	0,13	0,04		Radtke, 1989	
Popinsula	Abtao	-23,45	0,14	0,04		GEOTOP unpublished	
rennisula	Mejillones north	-23,05	0,18	0,03	7e	Radtke, 1989	
	Chacaya	-23,00	0,43	0,06		Ortlieb et al., 1996a	
	Hornitos	-22,90	0,26	0,03		Radtke, 1989	
	Hornitos	-22,90	0,28	0,06		Radtke, 1989; Ortlieb et al., 1996a	
	Abtao	-23,45	0,27	0,05		GEOTOP unpublished	
	Mejillones north	-23,05	0,13	0,05	90	Radtke, 1989	
	Chacaya	-23,00	0,27	0,05	90	Ortlieb et al., 1996a	
	Hornitos	-22,90	0,24	0,03		Ortlieb et al., 1996a	
	Morro Mejillones	-23,10	0,62	0,08	11	Gonzalez, after Marquardt, 2005	
	Michilla	-22,70	0,30	0,04		Leonard and Wehmiller 1991	
Michilla	Michilla	-22,70	0,18	0,11	56	GEOTOP unpublished	
	Michilla	-22 70	0 30	0.11	00	Labonne and Hillaire-Marcel, 2000;	
		22,10	0,00	0,11		Leonard and Wehmiller, 1991	
	Iquique	-20,40	0,16	0,04	5e	Radtke, 1989	
	llo	-17,60	0,29	0,15	5a	Ortlieb et al., 1992; Ortlieb et al., 1996b	
llo	llo	-17,70	0,14	0,07	5e	Ortlieb et al., 1992	
	llo	-17,70	0,15	0,04	7e	Ortlieb et al., 1992; Ortlieb et al., 1996b	
	llo	-17,58	0,24	0,02	9c	Saillard, 2008	

	llo	-17,70	0,18	0,06		Ortlieb et al., 1996b	
	Chala	-15,85	0,47	0,06	5e		
Chala /	Chala	-15,85	0,45	0,03	70		
Tanaka /	Tanaka	-15,74	0,43	0,06	76	Saillard, 2008	
Chaviña	Chala	-15,85	0,47	0,03	90		
Onavina	Chaviña	-15,60	0,46	0,05	90		
	Chala	-15,85	0,46	0,04	11	Goy et al., 1992	
		-15,50	0,68	0,04	7e	Osmond, 1987	
	Cerro El Huevo	-15,30	0,71	0,08	5a		
		-15,30	0,87	0,07	5c	Saillard et al., 2011	
		-15,30	0,82	0,08	5e		
		-15,30	0,70		5e	Macharé and Ortlieb, 1992	
		-15,30	0,70	0,04	7e		
		-15,30	0,63	0,03	9a	Saillard at al. 2011	
		-15,30	0,59	0,03	9c	Salilaru et al., 2011	
San Juan de		-15,30	0,55	0,04	11		
Marcona		-15,30	0,47		11	Hsu, 1992	
	Cerro Tres Hermanas	-15,37	0,70	0,08	5a		
	Certo ries riernanas	-15,37	0,69	0,08	5c		
		-15,37	0,61	0,09	5e		
		-15,37	0,61	0,03	7e	Saillard et al., 2011	
		-15,37	0,54	0,03	9a		
		-15,37	0,49	0,02	9c		
		-15,37	0,44	0,03	11		

33

34 **Table S1.** Uplift rates of marine terraces available in the literature and used in Figure 1d from

35 southern Chile to southern Peru (modified from *Regard et al.* [2010]). For graphical clarity

36 reasons, we picked the highest uplift rates (in dark) when several data were available for a

37 same site. Data in grey were not reported in Figure 1d but are shown for information.

38

Date	Source	Location	Magnitude	Length
12/16/1575	Lomnitz, 2004	Southern Chile	8.5	>500
02/08/15/0	Lomnitz,1970	Southern Chile	8.3	180
08/15/1582	Dorbath et al., 1990	SouthernPeru	7.5	75
07/09/1586	vvatanabe, 1983	Central Peru	8.1	80
11/24/1604	Dorbath et al., 1990	SouthernPeru	8.7	450
05/13/1647	Beck et al.,1998	Southern Chile	8.5	380
03/15/1657	Lomnitz,1970	Southern Chile	8	190
10/20/1687	Beck and Nishenko, 1990	Central Peru	8.6-8.7	>300
1715	Dorbath et al., 1990	Central Peru	7.5	75
07/08/1730	Beck et al., 1998	Southern Chile	8.7	550
12/24/1737	Lomnitz,1970	Southern Chile	7.7	>500
10/28/1746	Spence et al.,1999	Central Peru	8.6-9.5	350
05/25/1751	Cisternas et al., 2005	Southern Chile	8.5	500
06/25/1784	Dorbath et al., 1990	Central Peru	8.4	300
03/30/1796	Comte et al., 2002	Northern Chile	7.7	~200
04/11/1819	Comte et al., 2002	Southern Chile	8.3	300
11/19/1822	Lomnitz, 2004	Southern Chile	8-8.5	220
1833	Dorbath et al., 1990	Central Peru	7.2-7.7	50-100
02/20/1835	Lomnitz, 2004	Southern Chile	8.5	200
11/07/1837	Cisternas et al., 2005	Southern Chile	8.5	500
10/05/1859	Comte et al.,2002	Central Chile	7.6	100
13/08/1868	Spence et al., 1999	SouthernPeru	8.8	400
10/05/1877	Spence et al., 1999	Northern Chile	8.8	400
08/15/1880	Beck et al., 1998	Southern Chile	7.7	150
08/17/1906	Melnick et al., 2006	Central Chile	8.6	340
06/08/1909	Comte et al., 2002	Central Chile	7.6	~100
08/06/1913	Dorbath et al., 1990	Central Peru	7.8	<100
05/20/1918	Comte et al., 2002	Northern Chile	7.9	?
12/04/1918	Comte et al., 2002	Northern Chile	8.2	110
11/10/1922	Kelleher, 1972	Central Chile	8.4	390
12/01/1928	Lomnitz, 1970	Southern Chile	8.4	?
01/25/1939	Lomnitz, 2004	Southern Chile	8.3	190
05/24/1940	Beck and Nishenko, 1990	Central Peru	8	180
08/24/1942	Giovanni et al., 2002	Central Peru	8.1	210
04/06/1943	Kelleher, 1972	Central Chile	8.3	210
08/02/1946	Comte et al., 2002	Northern Chile	7.9	?
05/24/1960	Cisternas et al., 2005	Southern Chile	9.5	700
10/17/1966	Dorbath et al., 1990	Central Peru	8.2	100
05/31/1970	Dorbath et al., 1990	Central Peru	7.7	150
07/08/1971	Comte et al., 1986	SouthernPeru	7.9	110
10/03/1974	Beck and Nishenko, 1990	Central Peru	8.1	280
03/03/1985	Comte et al., 1986	Central Chile	7.8	170
07/30/1995	Delouis et al., 1997	Northern Chile	8.1	200
11/12/1996	Giovanni et al., 2002	Central Peru	7.7	130
02/21/1996	Bilek, 2010	Central Peru	7.5	110
06/23/2001	Giovanni et al., 2002	SouthernPeru	8.5	300
07/07/2001	Giovanni et al., 2002	SouthernPeru	7.6	-
08/15/2007	Perfettini et al., 2010	Central Peru	8	160
11/14/2007	Bilek, 2010	Northern Chile	7.7	160
02/27/2010	Moreno et al., 2010	Southern Chile	8.8	500
04/01/2014	Ashtari Jafari, 2015	Northern Chile	8.2	~120
04/04/2014	Ashtari Jafari, 2015	Northern Chile	7.7	~120
09/16/2015	Ruiz et al., 2016	Central Chile	8.3	~230

Table S2. Major historical earthquakes (Mw≥7.5) that ruptured the plate interface in the
trench-parallel direction from central Peru to southern Chile for the last 500 years and used in
Figure 1b (for Mw≤7.5, see Barrientos, 2007).

- 43
- 44

46

45 **Supplementary information 1:**

47 GPS data selection

48 To model the interseismic coupling pattern along the megathrust interface, we compiled 49 published interseismic GPS data collected between 1993 and 2013. In Peru, we used the GPS 50 compilation of Chlieh et al. [2011] that includes data from Norabuena et al. [1998], Bevis et al. 51 [2001], Gagnon et al. [2005]. In Chile, we used the GPS data from Brooks et al. [2011], Moreno et 52 al. [2011] and Métois et al. [2013, 2014] that includes data from Métois et al. [2012], Ruegg et al. 53 [2009] and Vigny et al. [2009]. In areas affected by recent great megathrust earthquakes (i.e., 54 2001 Arequipa, 2007 Pisco and Tocopilla, 2010 Maule, 2014 Pisagua and 2015 Illapel), we choose 55 the interseismic GPS velocities preceding these events to avoid displacement signals related to 56 co- and post-seismic transients. The resulting compilation is a selection of 300 interseismic GPS 57 measurements referenced to a common stable South America reference frame in ITRF2008 58 [*Altamimi et al.,* 2011].

59

61

60 **GPS-derived interseismic coupling model.**

To produce the interseismic coupling pattern along the megathrust interface described in the main text, we performed non-linear inversions of the GPS data based on a simulated annealing algorithm to determine the interseismic coupling distribution [*Chlieh et al.*, 2011]. Two types of constraints were used: one that minimizes the misfit (wrms) and a second that minimizes the difference in slip between adjacent subfaults. Two weights W_{st} and W_c are used to adjust the trade-off between fitting the data sets and satisfying the constraints. The criteria to invert the geodetic observations is represented as:

- 69
- 70

$$W_{\rm st}$$
. err_{st} + W_c (constraints) = minimum (1)

All inversions start with random initial fault models. The inversions of individual datasets with no constraints are first performed to determine the maximum improvements, which are then used to normalize the err_{st} in the refined inversions. The smoothing constraints are also normalized with the value of the initial models. After this processing, the weights W_{st} and W_c become dimensionless and equation (1) can be written as the weighted quadratic summation of the misfit to the data and a term that control the roughness of the distribution:

80 81

79

 $Cost = wrms^2 + \lambda_1 Dc^2$ (2)

B2 Dc represents the differences in back-slip rate between adjacent cells and a factor λ_1 that controls the smoothing of the distribution through a L1+L2 norm [*Ji et al.*, 2002]. We searched for the optimal smoothing factors by varying λ_1 from 0.001 to 100 and found that the best GPSfitting model family is for 0.1< λ_1 <1. Figure S1 reports the interseismic coupling model for λ_1 =0.5 and the GPS residuals are all within their formal error ellipses. The misfit (wrms) for this model is 3.2 mm/yr.

88

89 Spatial Resolution test

90 Using the spatial distribution and uncertainties of the GPS sites compiled for Peru and Chile, 91 along with the slab geometry described in the main text, we performed a spatial resolution test 92 to emphasize areas that are well resolved. We defined an initial checkerboard model with typical 93 cell size of 120 km x 60 km (Figure S2). The initial checkerboard is expressed in term of 94 characteristic size heterogeneities of full locking (shown in red in Figure S2) and full creeping 95 (in white, Figure S2). The spatial resolution is high in regions where the density of observations 96 is important and drops off significantly where observations are missing. In Peru, the resolution 97 is globally high below the coastline but falls significantly near the trench, especially where the 98 trench-coast distance is the highest. Along the Chilean trench, the along-strike resolution is 99 relatively high nearly everywhere except between 25°S and 26°S and south of latitude 39°S.

100

 $\begin{array}{c} 101 \\ 102 \end{array}$

Figure S1. On the left, Interseismic coupling map produced from the inversion of the GPS
sites. The misfit (wrms) for this model is 3.2 mm/yr. On the right, GPS residuals (observed –
modelled) with their formal 95% confidence level error ellipses.

Figure S2. Spatial resolution of the interseismic coupling along the megathrust interface. On the left, initial checkerboard model used to compute forward displacements at each GPS sites (green circles). Red patches have a surface of 120 km (along-strike) x 60 km (along-dip) and are considered fully locked. On the right, inverted solution considering the same input parameters (slab geometry, rake direction, smoothing coefficient). Most of the initial patches are reconstructed suggesting areas of high spatial resolution. Poorly defined or missing patches correspond to areas of the megathrust that are poorly resolved (grey shaded areas).

115 116

116 Figure S3. Comparison between short-term, GPS-derived interseismic coupling (red) and 117 trench-coast distances (blue) integrated along the Benioff zone in the convergence direction

118 (Euler pole from NUVEL1A, [*DeMets et al.*, 1994]). Both signals have been band-passed for

119 wavelengths ranging between 100 km and 500 km (including the mean values, and therefore

120 represent departures from average). Dashed lines show the high-pass filtered signal, leaving

all wavelengths shorter than 500 km. Coupling is integrated downdip along the convergence

122 directionmodeled by *Métois et al.* [2016] (<u>http://perso.univ-</u>

123 <u>lyon1.fr/marianne.metois/docs/average_coupling_bestmod.txt</u>) and projected on the slab

124 geometry derived by *Hayes et al.* [2012]. Black arrows indicate the location of the main

125 peninsulas. Color bars indicate the shortest width pairs of minima (peninsulas and low

126 coupling areas, yellow; embayments and high coupling areas, gray).